@stdlib/stats-base-dcumaxabs

Calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.

Usage no npm install needed!

<script type="module">
  import stdlibStatsBaseDcumaxabs from 'https://cdn.skypack.dev/@stdlib/stats-base-dcumaxabs';
</script>

README

dcumaxabs

NPM version Build Status Coverage Status dependencies

Calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.

Installation

npm install @stdlib/stats-base-dcumaxabs

Usage

var dcumaxabs = require( '@stdlib/stats-base-dcumaxabs' );

dcumaxabs( N, x, strideX, y, strideY )

Computes the cumulative maximum absolute value of double-precision floating-point strided array elements.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcumaxabs( x.length, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, 2.0, 2.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: output Float64Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative maximum absolute value of every other element in x,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );

var v = dcumaxabs( 4, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

dcumaxabs( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]

dcumaxabs.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative maximum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcumaxabs.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, 2.0, 2.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative maximum absolute value of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );

dcumaxabs.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 2.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var dcumaxabs = require( '@stdlib/stats-base-dcumaxabs' );

var y;
var x;
var i;

x = new Float64Array( 10 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );
console.log( y );

dcumaxabs( x.length, x, 1, y, -1 );
console.log( y );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2021. The Stdlib Authors.